Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 1.300
Filter
1.
Journal of Tropical Medicine ; 22(12):1661-1665, 2022.
Article in Chinese | GIM | ID: covidwho-20245315

ABSTRACT

Objective: To explore the pathogen composition and distribution characteristics of pathogens in respiratory samples from patients with fever of unknown origin. Methods: A total of 96 respiratory samples of patients with unknown cause fever with respiratory symptoms were collected from four hospitals above grade II in Shijiazhuang area (Hebei Provincial Hospital of Traditional Chinese Medicine, Luancheng District People's Hospital, Luquan District People's Hospital, Shenze County Hospital) from January to April 2020, and multiplex-fluorescent polymerase chain reaction(PCR)was used to detect influenza A virus, influenza B virus, enterovirus, parainfluenza virus I/II/III/IV, respiratory adenovirus, human metapneumovirus, respiratory syncytial virus, human rhinovirus, human bocavirus, COVID-19, Mycoplasma pneumoniae, Chlamydia pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa, Streptococcus pneumoniae, Klebsiella pneumoniae, Group A streptococcus, Haemophilus influenzae, Staphylococcus aureus nucleic acid detection, the results were analyzed for chi-square. Results: A total of 8 pathogens were detected in the upper respiratory tract samples of 96 fever patients, including 1 kind of virus, 6 kinds of bacterias, and Mycoplasma pneumoniae. There were 12 viruses including influenza virus and parainfluenza virus, Legionella pneumophila and Chlamydia pneumoniae were not detected. The pathogen detection rates in descending order were Streptococcus pneumoniae (58/96, 60.42%), Haemophilus influenzae(38/96, 39.58%), Klebsiella pneumoniae (14/96, 14.58%), Staphylococcus aureus (10/96, 10.42%), Mycoplasma pneumoniae (8/96, 8.33%), Pseudomonas aeruginosa (6/96, 6.25%), Group A streptococcus (4/96, 4.17%) and human rhinovirus (2/96, 2.08%). The proportions of single-pathogen infection and multi-pathogen mixed infection in fever clinic patients were similar, 41.67% (40/96) and 45.83% (44/96), respectively, and 12.50% (12/96)of the cases had no pathogens detected. The infection rate of Mycoplasma pneumoniae in female patients with fever (21.43%) was higher than that in male patients with fever (2.94%) (P < 0.05). There was no statistical difference between the distribution of of other pathogens and gender and age(P > 0.05). Conclusions: The upper respiratory tract pathogens were mainly bacterial infections, and occasional human rhinovirus and Mycoplasma pneumonia infections. In clinical diagnosis and treatment, comprehensive consideration should be given to the pathogen detection.

2.
Journal of Chemical Education ; 2022.
Article in English | Scopus | ID: covidwho-20245298

ABSTRACT

Owing to the global spread of the coronavirus disease 2019 (COVID-19), education has shifted to distance online learning, whereas some face-to-face courses have been resumed with the improvement of the outbreak prevention and management situation, including a laboratory course for senior undergraduate students in chemical biology. Here, we present an innovative chemical biology experiment covering COVID-19 topics, which was created for third-year undergraduates. The basic principles of two nucleic-acid- and antigen-based diagnostic techniques for SARS-CoV-2 are demonstrated in detail. These experiments are designed to provide students with comprehensive knowledge of COVID-19 and related diagnoses in daily life. Crucially, the biosafety of this experimental manipulation was ensured by using artificial nucleic acids and recombinant protein. Furthermore, an interactive hybrid online-facing teaching model was designed to cover the key mechanism regarding PCR and serological tests of COVID-19. Finally, a satisfactory evaluation was obtained through a questionnaire, and simultaneously, reasonable improvements to the course design were suggested. The proposed curriculum provides all the necessary information for other instructors to create new courses supported by research. © 2023 American Chemical Society and Division of Chemical Education, Inc.

3.
Cambridge Prisms: Precision Medicine ; 1, 2023.
Article in English | ProQuest Central | ID: covidwho-20244873

ABSTRACT

Diabetes mellitus is prevalent worldwide and affects 1 in 10 adults. Despite the successful development of glucose-lowering drugs, such as glucagon-like peptide-1 (GLP-1) receptor agonists and sodium-glucose cotransporter-2 inhibitors recently, the proportion of patients achieving satisfactory glucose control has not risen as expected. The heterogeneity of diabetes determines that a one-size-fits-all strategy is not suitable for people with diabetes. Diabetes is undoubtedly more heterogeneous than the conventional subclassification, such as type 1, type 2, monogenic and gestational diabetes. The recent progress in genetics and epigenetics of diabetes has gradually unveiled the mechanisms underlying the heterogeneity of diabetes, and cluster analysis has shown promising results in the substratification of type 2 diabetes, which accounts for 95% of diabetic patients. More recently, the rapid development of sophisticated glucose monitoring and artificial intelligence technologies further enabled comprehensive consideration of the complex individual genetic and clinical information and might ultimately realize a precision diagnosis and treatment in diabetics.

4.
Acta Anaesthesiologica Scandinavica ; 67(4):559-560, 2023.
Article in English | EMBASE | ID: covidwho-20244679

ABSTRACT

Background: COVID-19 has been associated with cerebral microbleeds (CMB). Previously, an association of ApoE4 with COVID-19 severity and CMBs in autopsy was found. In this study, we investigated if carrying the Apoe4 allele relates to the number of CMBs in magnetic resonance imaging (MRI) in patients recovered from COVID-19. Material(s) and Method(s): Adult patients recovered from COVID-19 and a control group without a history of COVID-19 was recruited. Exclusion criteria were major neurologic disease, developmental disability or pregnancy. The participants underwent brain MRI 6 months after infection, and a blinded neuroradiologist analyzed the findings. ApoE was genotyped using a microarray. Statistical analysis was performed using the statistical software R. A negative binomial model was chosen based on the distribution of CMBs. Result(s): Of the 216 subjects that underwent MRI, 168 consented to genetic testing, additionally 2 patients were excluded due to extensive CMBs and 1 due to diffuse axonal injury. We included 113 COVID-19 patients (49 ICU-treated, 29 ward-treated and 35 home-isolated) and 52 controls. The most prevalent comorbidities were hypertension, asthma and diabetes. CMBs was found in 47 subjects, with the number of CMBs ranging from 0 to 26. The ApoeE4 allele was carried by 37%, equally distributed among the groups. After adjustment, age (aRR = 1.06, p = 0.007) and COVID-19 (aRR = 2.59, p = 0.038) were independently associated with CMBs. The ApoE4 allele (aRR = 2.16, p = 0.07, CI = 0.94-5.10) was not significant. Conclusion(s): Age and previous COVID-19, but not possession of the ApoeE4 allele, were independently associated with the number of CMBs.

5.
Chinese Journal of Nosocomiology ; 33(4):522-526, 2023.
Article in Chinese | GIM | ID: covidwho-20244455

ABSTRACT

OBJECTIVE: To investigate the expressions of peripheral blood microRNA-21(miR-21) and transforming growth factor-beta(TNF-beta)/Smad signaling transduction pathway in patients with bronchial asthma complicated with respiratory virus infection. METHODS: Totally 109 patients with asthma complicated with respiratory virus infection(study group) and 104 patients without virus infection(control group) in the Third People's Hospital of Gansu Province between Feb.2019 and Feb.2021 were selected for the cross-sectional study. The basic data of the two groups were collected, and parameters including vital signs, lung function, peripheral blood miR-21 and TGF-beta/Smad signaling pathway proteins were measured. According to the guidelines, the patients of the two groups were divided into acute exacerbation phase and stable phase. The examination results of each group were compared and the levels of peripheral blood miR-21 and TGF-beta/Smad signaling pathway proteins expression of patients with asthma complicated with respiratory virus infection were analyzed. RESULTS: In study group, the proportion of respiratory virus infection among 109 patients was 33.94% for influenza virus, 23.85% for human rhinovirus, 19.27% for respiratory syncytial virus, 10.09% for parainfluenza virus, 6.42% for adenovirus, 4.59% for human coronavirus and 1.83% for human metapneumovirus respectively. The proportion of patients with acute exacerbation phase in the study group was higher than that in the control group, and the levels of peripheral blood miR-21, TGF-beta1, Smad7, pSmad2 and pSmad3 were higher than those in control group(P<0.05). The levels of miR-21, TGF-beta1, Smad2, Smad3, Smad7, pSmad2 and pSmad3 in peripheral blood of patients with acute exacerbation phase of asthma were higher than those of patients with stable phase of asthma(P<0.05). There were no statistical differences in peripheral blood miR-21, TGF-beta1, Smad2, Smad3, Smad7, pSmad2 and pSmad3 levels in asthma patients with different virus infections. CONCLUSION: Early respiratory virus infections might lead to increased expression of peripheral blood miR-21 and increased activation of TGF-beta/Smad signaling pathway in patients with asthma, which played an important role in acute attack of asthma.

6.
Acta Medica Bulgarica ; 50(2):10-19, 2023.
Article in English | EMBASE | ID: covidwho-20244214

ABSTRACT

Compared to other respiratory viruses, the proportion of hospitalizations due to SARS-CoV-2 among children is relatively low. While severe illness is not common among children and young individuals, a particular type of severe condition called multisystem inflammatory syndrome in children (MIS-C) has been reported. The aim of this prospective cohort study, which followed a group of individuals under the age of 19, was to examine the characteristics of patients who had contracted SARS-CoV-2, including their coexisting medical conditions, clinical symptoms, laboratory findings, and outcomes. The study also aimed to investigate the features of children who met the WHO case definition of MIS-C, as well as those who required intensive care. A total of 270 patients were included between March 2020 and December 2021. The eligible criteria were individuals between 0-18 with a confirmed SARS-CoV-2 infection at the Infectious Disease Hospital "Prof. Ivan Kirov"in Sofia, Bulgaria. Nearly 76% of the patients were <= 12 years old. In our study, at least one comorbidity was reported in 28.1% of the cases, with obesity being the most common one (8.9%). Less than 5% of children were transferred to an intensive care unit. We observed a statistically significant difference in the age groups, with children between 5 and 12 years old having a higher likelihood of requiring intensive care compared to other age groups. The median values of PaO2 and SatO2 were higher among patients admitted to the standard ward, while the values of granulocytes and C-reactive protein were higher among those transferred to the intensive care unit. Additionally, we identified 26 children who met the WHO case definition for MIS-C. Our study data supports the evidence of milder COVID-19 in children and young individuals as compared to adults. Older age groups were associated with higher incidence of both MIS-C and ICU admissions.Copyright © 2023 P. Velikov et al., published by Sciendo.

7.
Journal of Biological Chemistry ; 299(3 Supplement):S396-S397, 2023.
Article in English | EMBASE | ID: covidwho-20243840

ABSTRACT

Objective: Immunohistochemistry of post-mortem lung tissue from Covid-19 patients with diffuse alveolar damage demonstrated marked increases in chondroitin sulfate and CHST15 and decline in N-acetylgalactosamine-4-sulfatase. Studies were undertaken to identify the mechanisms involved in these effects. Method(s): Human primary small airway epithelial cells (PCS 301-010;ATCC) were cultured and exposed to the SARSCoV- 2 spike protein receptor binding domain (SPRBD;AA: Lys310-Leu560;Amsbio). Expression of the spike protein receptor, angiotensin converting enzyme 2 (ACE2), was enhanced by treatment with Interferon-beta. Promoter activation, DNA-binding, RNA silencing, QPCR, Western blots, ELISAs, and specific enzyme inhibitors were used to elucidate the underlying molecular mechanisms. Result(s): Treatment of the cultured cells by the SPRBD led to increased CHST15 and CHST11 expression and decline in ARSB expression. Sulfotransferase activity, total chondroitin sulfate, and sulfated glycosaminoglycan (GAG) content were increased. Phospho-T180/T182-p38-MAPK and phospho- S423/S425-Smad3 were required for the activation of the CHST15 and CHST11 promoters. Inhibition by SB203580, a phospho-p38 MAPK inhibitor, and by SIS3, a Smad3 inhibitor, blocked the CHST15 and CHST11 promoter activation. SB203580 reversed the SPRBD-induced decline in ARSB expression, but SIS3 had no effect on ARSB expression or promoter activation. Phospho-p38 MAPK was shown to reduce retinoblastoma protein (RB) S807/S811 phosphorylation and increase RB S249/T252 phosphorylation. E2F-DNA binding declined following exposure to SPRBD, and SB203580 reversed this effect. This indicates a mechanism by which SPRBD, phospho-p38 MAPK, E2F, and RB can regulate ARSB expression and thereby impact on chondroitin 4-sulfate and dermatan sulfate and molecules that bind to these sulfated GAGs, including Interleukin-8, bone morphogenetic protein-4, galectin-3 and SHP-2 (Src homology region 2-containing protein tyrosine phosphatase 2). Conclusion(s): The enzyme ARSB is required for the degradation of chondroitin 4-sulfate and dermatan sulfate, and accumulation of these sulfated GAGs can contribute to lung pathophysiology, as evident in Covid-19. Some effects of the SPRBD may be attributable to unopposed Angiotensin II, when Ang1-7 counter effects are diminished due to binding of ACE2 with the SARS-CoV-2 spike protein and reduced production of Ang1-7. Aberrant cell signaling and activation of the phospho-p38 MAPK and Smad3 pathways increase CHST15 and CHST11 production, which can contribute to increased chondroitin sulfate in infected cells. Decline in ARSB may occur as a consequence of effects of phospho-p38 MAPK on RB phosphorylation and E2F1 availability. Decline in ARSB and the resulting impaired degradation of sulfated GAGs have profound consequences on cellular metabolic, signaling, and transcriptional events. Funding is VA Merit Award.Copyright © 2023 The American Society for Biochemistry and Molecular Biology, Inc.

8.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20243635

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a fatal pandemic viral disease caused by the severe acute respiratory syndrome corona virus type-2 (SARS-CoV-2). The aim of this study is to observe the associations of IL-6, SARS-COV-2 viral load (RNAemia), IL- 6 gene polymorphism and lymphocytes and monocytes in peripheral blood with disease severity in COVID-19 patients. This study was carried out from March 2021 to January 2022. RT-PCR positive 84 COVID-19 patients and 28 healthy subjects were enrolled. Blood was collected to detect SARS-COV-2 viral RNA (RNAemia) by rRT-PCR, serum IL-6 level by chemiluminescence method, SNPs of IL-6 by SSP-PCR, immunophenotyping of lymphocytes and monocyte by flow cytometry. Serum IL-6 level (pg/ml) was considerably high among critical patients (102.02 +/- 149.7) compared to severe (67.20 +/- 129.5) and moderate patients (47.04 +/- 106.5) and healthy controls (3.5 +/- 1.8). Serum SARS-CoV-2 nucleic acid positive cases detected mostly in critical patients (39.28%) and was correlated with extremely high IL-6 level and high mortality (R =.912, P < 0.001). Correlation between IL-6 and monocyte was statistically significant with disease severity (severe group, p < 0.001, and 0.867*** and critical group p < 0.001 and 0.887***). In healthy controls, moderate, severe and critically ill COVID-19 patients, IL-6 174G/C (rs 1800795) GG genotype was 82.14%, 89.20%, 67.85% and 53.57% respectively. CC and GC genotype had strong association with severity of COVID-19 when compared with GG genotype. Significant statistical difference found in genotypes between critical and moderate groups (p < 0.001, OR-10.316, CI-3.22-23.86), where CC genotype was associated with COVID-19 severity and mortality. The absolute count of T cell, B cell, NK cell, CD4+ T cells and CD8+ T cells were significantly decreased in critical group compared to healthy, moderate and severe group (P < 0.001). Exhaustion marker CD94/NKG2A was increased on NK cells and CD8+ cytotoxic T cell among critical and severe group. Absolute count of monocyte was significantly increased in critical group (P < 0.001). Serum IL-6, IL-6 174 G/C gene and SARS-CoV-2 RNAaemia can be used in clinical practice for risk assessment;T cell subsets and monocyte as biomarkers for monitoring COVID-19 severity. Monoclonal antibody targeting IL-6 receptor and NKG2A for therapeutics may prevent disease progression and decrease morbidity and mortality.Copyright © 2023 Elsevier Inc.

9.
Journal of Polymer Science ; 2023.
Article in English | Web of Science | ID: covidwho-20243199

ABSTRACT

Over the past century, synthetic polymers have had a transformative impact on human life, replacing nature-derived materials in many areas. Yet, despite their many advantages, the structure and function of synthetic polymers still appear rudimentary compared to biological matter: cells use dynamic self-assembly to construct complex materials and operate sophisticated macromolecular devices. The field of DNA nanotechnology has demonstrated that synthetic DNA molecules can be programmed to undergo predictable self-assembly, offering unparalleled control over the formation and dynamic properties of artificial nanostructures. Intriguingly, the principles of DNA nanotechnology can be applied to the engineering of soft programmable materials, bringing the abilities of synthetic polymers closer to their biological counterparts. In this perspective, we discuss the unique features of DNA-functionalized polymer materials. We describe design principles that allow researchers to build complex supramolecular architectures with predictable and dynamically adjustable material properties. Finally, we highlight two key application areas where this biologically inspired material class offers particularly promising opportunities: (1) as dynamic matrices for 3D cell and organoid culture and (2) as smart materials for nucleic acid sequencing and pathogen detection.

10.
American Journal of Reproductive Immunology ; 89(Supplement 1):53-54, 2023.
Article in English | EMBASE | ID: covidwho-20242986

ABSTRACT

Problem: Several large studies have demonstrated that COVID-19 pregnant individuals are at a significant risk for severe disease and adverse pregnancy outcomes. The mechanisms underlying these phenomena remain to be elucidated and are the focus of our project. Although fetal and placental infection is rare, placental abnormalities and adverse pregnancy outcomes associated with placental dysfunction in COVID-19 cases have been widely reported. In particular, placental thrombosis and lesions consistent with maternal vascular malperfusion (MVM) of the placenta are common in individuals with COVID-19. Since thrombotic complications have been associated with COVID-19, it is not surprising that pregnant individuals with COVID- 19 are at risk for placental thrombosis. Method of Study: Placentas were evaluated histologically. Extracellular vesicles were isolated by serial centrifugation. Result(s): Adverse pregnancy outcomes associated with these placental lesions, including hypertensive disorders of pregnancy (gestational hypertension and preeclampsia), small for gestational age (SGA, birthweight < 10th percentile for gestational age), and preterm birth (PTB, < 37 weeks) are significantly increased among pregnant individuals with COVID-19. Placental infection with SARSCoV- 2 is uncommon, but multiple inflammatory and metabolic factors are likely to affect the placenta, including circulating extracellular vesicles (EVs) derived from various organs that have been associated with COVID-19 pathology and disease severity.We have analyzed over 500 placentas from COVID-19 pregnancies and found marked changes in placental morphology, characterized by abnormal maternal and fetal vessels, intervillous thrombi, and fibrin deposition, even in the face of mild or asymptomatic disease. We detected increased levels of small EVs in maternal serum from COVID-19 cases compared to controls and increased levels of mitochondrial DNA in EVs from COVID-19 cases. In in vitro experiments, we found increased oxidative stress in uterine endothelial cells and primary trophoblasts. Syncytialization of trophoblast cells following exposure to EVs from pregnant COVID-19 patients was markedly reduced. RNAseq of trophoblast cells exposed to EVs from pregnant COVID-19 patients revealed disruption of multiple pathways related to mitochondria function, oxidative stress, coagulation defects, and inflammation. Timing of infection during pregnancy (first, second, and third trimester) altered EV size distribution, cargo content, and functional consequences of trophoblast EV exposure. Conclusion(s): Our studies show that COVID-19 infection during pregnancy has profound effects on placenta morphology and function. It remains to be determined what the long-term consequences are on the offspring.

11.
Journal of Southwest Minzu University Natural Science Edition ; 49(2):142-148, 2023.
Article in Chinese | CAB Abstracts | ID: covidwho-20242702

ABSTRACT

Canine parvovirus (CPV), canine coronavirus (CCoV) and canine rotavirus (CRV) are the three main causative viruses of diarrhea in dogs with similar clinical symptoms;thereby it is necessary to establish a high effective molecular detection method for differentiating the above pathogens. By optimizing the primer concentration and annealing temperature, a triple PCR method was established for simultaneous detection of CPV, CCoV and CRV, and then the specificity, sensitivity and repeatability of the method were tested. The results showed that the target fragments of CPV VP2 gene (253 bp), CCoV ORF-1b gene (379 bp) and CRV VP6 gene (852 bp) could be accurately amplified by the triple PCR method with high specificity, the detection limits of CPV, CCOV and CRV were 6.44x10-1 pg/L, 8.72x10-1 pg/L and 8.35x10-1 pg/L respectively with high sensitivity, and the method had good stability. Using this triple PCR method, 135 canine diarrhea fecal samples collected in Chengdu region from 2019 to 2020 were detected, and compared with those of single PCR method. The detection rates of CPV, CCoV and CRV were 16.30%, 20.74% and 4.44%, respectively, and the total infection rate was 51.11% (65/135) with 20.00% (13/65) co-infection rate. The detection results were consistent with three single PCR methods. In conclusion, CPV/CCoV/CRV triple PCR method successfully established in this paper can be applied as an effective molecular method to detection of related pathogens and to the epidemiological investigation.

12.
Annals of the Rheumatic Diseases ; 82(Suppl 1):958, 2023.
Article in English | ProQuest Central | ID: covidwho-20241587

ABSTRACT

BackgroundAnti-MDA5 antibody-positive dermatomyositis (anti-MDA5+DM) is a rare autoimmune disease associated with a high mortality rate due to rapid-progressive interstitial lung disease (RP-ILD), particularly in East Asia[1]. MDA5, acts as a cytoplasmic sensor of viral RNA, thus activating antiviral responses including the type I interferon (IFN) signaling pathway[2]. The involvement of type 1 IFN in the pathogenesis of MDA5+DM has been proposed based on the significantly elevated expression of its downstream stimulated genes(ISG) in muscle, skin, lung, and peripheral blood[3;4]. Janus kinase inhibitor, which targets the IFN pathway, combined with glucocorticoid could improve the survival of early-stage MDA5+DM-ILD patients[5]. In clinical practice, there is still an urgent demand for sensitive biomarkers to facilitate clinical risk assessment and precise treatment.ObjectivesThis study aimed to investigate the clinical significance of interferon score, especially IFN-I score, in patients with anti-MDA5+DM.MethodsDifferent subtypes of idiopathic inflammatory myopathy, including anti-MDA5+DM(n=61), anti-MDA5-DM(n=20), antisynthetase syndrome(ASS,n=22),polymyositis(PM,n=6) and immune-mediated necrotizing myopathy(IMNM,n=9), and 58 healthy controls were enrolled.. A multiplex quantitative real-time PCR(RT-qPCR) assay using four TaqMan probes was utilized to evaluate two type I ISGs (IFI44, MX1, which are used for IFN-I score), one type II ISG (IRF1), and one housekeeping gene (HRPT1). Clinical features and disease activity index were compared between high and low IFN-I score groups in 61 anti-MDA5+DM patients. The association between laboratory findings and the predictive value of baseline IFN-I score level for mortality was analyzed.ResultsThe IFN scores were significantly higher in patients with anti-MDA5+DM than in HC (Figure 1A). The IFN-I score correlated positively with serum IFN α(r = 0.335, P =0.008), ferritin (r = 0.302, P = 0.018), and Myositis Disease Activity Assessment Visual Analogue Scale (MYOACT) score(r=0.426, P=0.001). Compared with patients with low IFN-I scores, patients with high IFN-I scores showed increased MYOACT score, CRP, AST, ferritin, and the percentages of plasma cells (PC%) but decreased lymphocyte count, natural killer cell count, and monocyte count. The 3-month survival rate was significantly lower in patients with IFN-I score > 4.9 than in those with IFN-I score ≤ 4.9(72.9% vs. 100%, P=0.044)(Figure 1B).ConclusionIFN score, especially IFN-I score, detected by multiplex RT-qPCR, can be a valuable biomarker for monitoring disease activity and predicting mortality in anti-MDA5+DM patients.References[1]I.E. Lundberg, M. Fujimoto, J. Vencovsky, R. Aggarwal, M. Holmqvist, L. Christopher-Stine, A.L. Mammen, and F.W. Miller, Idiopathic inflammatory myopathies. Nat Rev Dis Primers 7 (2021) 86.[2]G. Liu, J.H. Lee, Z.M. Parker, D. Acharya, J.J. Chiang, M. van Gent, W. Riedl, M.E. Davis-Gardner, E. Wies, C. Chiang, and M.U. Gack, ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nat Microbiol 6 (2021) 467-478.[3]G.M. Moneta, D. Pires Marafon, E. Marasco, S. Rosina, M. Verardo, C. Fiorillo, C. Minetti, L. Bracci-Laudiero, A. Ravelli, F. De Benedetti, and R. Nicolai, Muscle Expression of Type I and Type II Interferons Is Increased in Juvenile Dermatomyositis and Related to Clinical and Histologic Features. Arthritis Rheumatol 71 (2019) 1011-1021.[4]Y. Ye, Z. Chen, S. Jiang, F. Jia, T. Li, X. Lu, J. Xue, X. Lian, J. Ma, P. Hao, L. Lu, S. Ye, N. Shen, C. Bao, Q. Fu, and X. Zhang, Single-cell profiling reveals distinct adaptive immune hallmarks in MDA5+ dermatomyositis with therapeutic implications. Nat Commun 13 (2022) 6458.[5]Z. Chen, X. Wang, and S. Ye, Tofacitinib in Amyopathic Dermatomyositis–Associated Interstitial Lung Disease. New England Journal of Medicine 381 (2019) 291-293.AcknowledgementsThis work was supported by the National Natural Science Foundation of China [81974251], and Shanghai Hospital Develop ent Center, Joint Research of New Advanced Technology Project [SHDC12018106]Disclosure of InterestsNone Declared.

13.
American Journal of Clinical Pathology, suppl 1 ; 158, 2022.
Article in English | ProQuest Central | ID: covidwho-20241268

ABSTRACT

Introduction/Objective In both the past and for the foreseeable future, SARS-CoV-2 (the coronavirus that causes COVID-19 disease) will continue to evolve. This evolution has already and will lead to new variants that will then cause surges of infection. These outbreaks in the past with the variant responsible have previously been reported individually. However, a timeline perspective on the changing SARS-CoV-2 variant landscape is sparse in the literature, particularly for testing performed at a Veteran Affairs Medical Center (VAMC). The Veteran population has increased comorbidities compared to the general population leading to susceptibility to infection including SARS-CoV-2. Hence, it is of utmost importance to explore the trending variants of SARS-CoV-2 in the veteran population as this epidemiological information may help in preventing transmission, which remains key in the management of COVID-19. Methods/Case Report Samples from selected patients from March 2021 to June 2022 who tested positive for SARS- CoV-2 by reverse transcriptase polymerase chain reaction with a cycle threshold or number <30 (required for sequencing) were sent for SARS-CoV-2 sequencing analysis. Results (if a Case Study enter NA) There were a total of 19 VAMC patients who were sequenced during the entire study period (March 2021 to June 2022). From March to May 2021, there were 8 patients, from which 6 demonstrated Pango Lineage B.1.1.7, 1 demonstrated Pango Lineage B.1.526.1, and 1 demonstrated Pango Lineage B.1. Later in 2021 (August to October 2021), there were 4 patients all of which demonstrates the Delta variant;2 of these 4 demonstrated the Delta subvariant Pango Lineage AY.25 and the other 2 demonstrated Pango Lineage AY.44. By May to June 2022, there were 7 patients, all of whom demonstrated infection by the Omicron variant. Interestingly, 6 of these 7 patients demonstrated the newly emerging subvariant BA.2.12.1 and the remaining 1 demonstrated BA.2.9. Conclusion SARS-CoV-2 has continued to evolve throughout the course of the pandemic, which has led to variants and subvariants that have predominated for a time to cause an outbreak only to be replaced later by a different strain. This timeline epidemiological perspective demonstrates that the Veteran population has also been affected by the variants that have led to outbreaks in the past within the general population.

14.
Cytotherapy ; 25(6 Supplement):S267-S268, 2023.
Article in English | EMBASE | ID: covidwho-20240749

ABSTRACT

Background & Aim: Gene therapies has become recognized for its remarkable clinical benefits in a variety of medical applications, in particular recent approval of an Ad vector-based COVID-19 vaccines have attracted recent global attention. Here, we present key considerations for GMP compliant process development for Coxsackie virus type B3 (CVB3), an oncolytic virus designed for clinical trial in triple-negative breast cancer. Methods, Results & Conclusion(s): CVB3 is a non-enveloped, linear single-strand RNA virus with a size of approximately 27-33 um in diameter. From the initial type using the zonal rotor centrifuge to the advanced type using the tangential flow filtration system and ion chromatograph, we considered the points of the design concept in constructing the manufacturing process. The final design system is constructed as a closed and single-use manufacturing system in which all processes from upstream large-scale cell culture to downstream target purification and concentration steps. In brief, HEK293 cell suspension extended in 3L serum-free medium infected with CVB3, up to 3.6 times 10 to 7 of TCID50 /mL before going to downstream steps, made total 150 mL of final products as 8.43 times 10 to 7 of TCID50/mL concentration. Although further quality control challenges remain that is removal of product-related impurities such as human cellular proteins and residual DNA/RNA to increase virus purity, this concept is effectively applicable even for other types of viruses as GMP manufacturing processes, and would be also important for technology transfer to future commercial production.Copyright © 2023 International Society for Cell & Gene Therapy

15.
African Journal of Clinical and Experimental Microbiology ; 24(1):1-8, 2023.
Article in English | CAB Abstracts | ID: covidwho-20240203

ABSTRACT

The current monkeypox outbreak is a public health emergency of international concern and is coming in the wake of the SARS-CoV-2 pandemic. Human monkeypox is a viral zoonotic infection caused by monkeypox virus, an enveloped double-stranded DNA virus of the genus Orthopoxvirus and family Poxviridae that also contain smallpox, cowpox, Orf, and vaccinia viruses. Online databases including PubMed, Google Scholar and Web of Science were searched to obtain relevant publications on the epidemiology, treatment, vaccines and the economic impacts of the current monkeypox (Mpox) outbreak.

16.
Acta Agriculturae Zhejiangensis ; 34(3):457-463, 2022.
Article in Chinese | CAB Abstracts | ID: covidwho-20240064

ABSTRACT

To establish a method for simultaneous detection of porcine circovirus type 2 (PCV2) and porcine circovirus type 3 (PCV3), specific primers and TaqMan probes were designed after sequence alignment according to the specific sequences of PCV2 Cap gene and PCV3 Cap gene on GenBank. By optimizing the reaction conditions, a duplex fluorescence quantitative PCR detection method for simultaneous detection of porcine circovirus type 2 and 3 was established, and the specificity, sensitivity, and reproducibility were tested. Specificity test results showed that in addition to the positive test results for PCV2 and PCV3, tests for PRRSV, CSFV, PPV, PRV, PEDV, and TGEV were all negative with no cross-reaction, indicating its good specificity. Sensitivity test results showed that the minimum detection limit for detection of PCV2 and PCV3 can both reach 10 copies.L-1, indicating its high sensitivity. The coefficient of variation within and between groups of this method was less than 2%, indicating its good stability. A total of 181 pork and whole blood samples collected from Zhejiang Province were tested using the detection method established in this article and the standard common fluorescent PCR detection method. The results showed that the positive rate of PCV2 was 50.83% (92/181), the positive rate of PCV3 was 37.57% (68/181), and the co-infection rate of PCV2 and PCV3 was 12.15% (22/181). The above detection results of ordinary fluorescent PCR were 50.28% (91/181), 36.46% (66/181), and the co-infection rate was 11.60% (21/181). The coincidence rates of the two methods for PCV2 and PCV3 can reach 98.91% and 97.06%, and the coincidence rate for PCV2 and PCV3 mixed infection were 95.45%. In summary, the duplex fluorescence quantitative PCR detection method established in this experiment can distinguish PCV2 and PCV3 rapidly, which can be used for pathogen detection and epidemiological investigation.

17.
Journal of Economic Animal ; 27(1):74-78, 2023.
Article in Chinese | CAB Abstracts | ID: covidwho-20239651

ABSTRACT

Porcine deltacoronavirus (PDCOV) is a new type of pig intestinal coronavirus, which targets pig small intestinal epithelial cells to cause severe enteritis. After infecting the host, PDCoV finishes its proliferation in the host cell by antagonism or escape the innate immune signaling transduction pathway. In order to understand the action mechanism of PDCOV 0n the congenital immune signal transduction pathways, this paper reviews the effects of PDCOV on RLR, Jak-STAT, MAPK and mitochondrial signaling pathway to clarify the relationship between PDCOV and host innate immune signaling transduction pathways in order to provide help for the prevention and treatment of PDCOV infection.

18.
Kanzo/Acta Hepatologica Japonica ; 63(10):463-464, 2022.
Article in Japanese | EMBASE | ID: covidwho-20239451

ABSTRACT

Immunosuppressive drugs are used for treating coronavirus disease 2019COVID-19pneumonia. This study examined the current status of screening and monitoring patients with COVID-19 pneumonia treated with immunosuppressive agents for hepatitis B virusHBVreactivation. Of 123 patients whose hepatitis B surface antigen level was measured, 2 were HBsAg-positive. Antihepatitis B core/surface antibodies were measured in all 121 HBsAg-negative patients. HBV DNA was measured in 31 of 32 patients who were positive for either or both antihepatitis B core/surface antibodies. Of 34 patients requiring regular monitoring, only 4 were monitored. The HBV monitoring rate at the initiation of COVID-19 treatment was high. How-ever, HBV monitoring after COVID-19 treatment was difficult because most patients were transferred to other hospitals or had their treatment terminated.Copyright © 2022 Takeshi Matsui et al.

19.
Kanzo/Acta Hepatologica Japonica ; 63(3):170-172, 2022.
Article in Japanese | EMBASE | ID: covidwho-20239450

ABSTRACT

The patient presented with fever and appetite loss. Computed tomography (CT) revealed a moderate grade 2 pneumonia. Besides, further blood examination showed his HB antigen as negative, anti-HBs/c anti-body as positive, and HBV DNA level as 1.0 LIU/mL. Therefore, he was diagnosed with COVID-19. Administered treatments comprised oxygen inhalation and steroid therapy, including pulses, remdesivir, and baricitinib, which improved pneumonia. Interestingly, one month posttreatment, his HBV DNA level in-creased to 1.4 LIU/mL, followed by a further increase to 1.7 LIU/Ml, showing an improvement. Tenofovir alafenamide fumarate was thus administered. In clinical practice, immunosuppressive therapy is used for patients with moderate-to-severe COVID-19 pneumo-nia. However, close attention should also be paid to the elevation of blood HBV DNA levels during and after treatment.Copyright © 2022 The Japan Society of Hepatology.

20.
European Journal of Human Genetics ; 31(Supplement 1):343, 2023.
Article in English | EMBASE | ID: covidwho-20238897

ABSTRACT

Background/Objectives: Genetic variants affecting host defense against pathogens may help explain COVID-19 fatal outcomes. Our aim was to identify rare genetic variants related to COVID-19 severity in a selected group of patients under 60 years who required intubation or resulting in death. Method(s): Forty-four very severe COVID-19 patients were selected from the Spanish STOP-Coronavirus cohort, which comprises more than 3,500 COVID-19 patients. Genotype was performed by whole exome sequencing and variants were selected by using a gene panel of 867 candidate genes (immune response, primary immunodeficiencies or coagulation, among other). Variants were filtered, priorized and their potential pathogenicity was assessed following ACGM criteria. Result(s): We detected 44 different variants of interest, in 29 different patients (66%). Some of these variants were previously described as pathogenic (26%). Mostly, the candidate variants were located in genes related to immune response (38%), congenital disorders of glycosylation (14%) or damaged DNA binding genes (9%). A network analysis, showed three main components, consisting of 25 highly interconnected genes related to immune response and two additional networks enriched in carbohydrate metabolism and in DNA metabolism and repair processes. Conclusion(s): The variants identified affect different, but interrelated, functional pathways such as immune response and glycosylation. Further studies are needed for confirming the ultimate role of the new candidate genes described in the present study on COVID-19 severity.

SELECTION OF CITATIONS
SEARCH DETAIL